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Abstract. This paper pr esents new necessary and su�cient conditions for compact poly-

he dr al sets be robustly �-contractive with resp ect touncertain discrete-time linear systems

with saturating control inputs. Based on line arpr ogramming formulation of these condi-

tions, an e�ective procedure is pr op ose dfor construction of robustly �-contractive polyhe-

dr al sets with nonempty intersection with the region of nonlinear behavior of the closed-lo op

system. The procedure starts with the supremal robustly �-contractive set contained in the

region of linear behavior and progr essively expands it over the region of nonlinear behavior.
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1. INTRODUCTION

Consider an uncertain autonomous dynamical system represented b ya family of dis-

crete time models S (Barmish, 1994). Roughly speaking, a nonempty set 
 de�ned in

state space of S, is said to be robustly �-contractive with respect to (w.r.t.) S if there is

a real 0 � � < 1 such that: for all S members, if state x(k) 2 �
 then x(k + 1) 2 ��


for all 0 < � � 1. Robustly contractive sets are important in analysis and control design

for both linear and nonlinear uncertain systems: they correspond to regions of robust

asymptotic stability and they can also play the role of \con�nement sets", a k ey idea

widely exploited in the case of systems subject to constraints (Milani & Carvalho, 1995),

(Verriest & P ajunen,1996), (Blanchini, 1994).

When designing stabilizing feedback controllers for linear systems subject to control

bounds, a prevalent and challenging aspect to be considered is nonlinearity due to satura-

tion of control inputs. A common but conservative approach is to search for �-contractive

sets that av oidsaturation, k eeping the closed-loop system working in its region of linear

behavior (Vassilaki et al., 1988), (Gilbert & T an,1991). A more e�ective, but also more

di�cult approach is to allow saturation of control inputs and consequent nonlinear be-

havior of the closed-loop system. In this sense, for discrete-time systems with perfectly



known models, Silva Jr. & Tarbouriech (1997), using a piecewise linear description of the

closed-loop system, present a necessary and su�cient condition for convex polyhedral sets

be �-contractive. The proposed condition requires the knowledge of the extreme points

associated to each face of the polyhedral set, which complicates its use even in problems

of moderate dimensions and discourages its extension to uncertain systems.

This paper deals with the characterization and construction of robustly �-contractive

sets w.r.t. uncertain discrete-time linear systems with saturating control inputs. New

necessary and su�cient conditions are proposed for compact polyhedral sets be robustly

�-contractive w.r.t. discrete-time systems with uncertain domains de�ned by compact

polytopes. Based on linear programming formulation of these necessary and su�cient

conditions, an e�ective non homothetic expansion procedure is proposed for construc-

tion of robustly �-contractive sets with nonempty intersection with regions of closed-loop

nonlinear behavior of uncertain systems.

Throughout this paper, for two n�m real matrices A = (aij) and B = (bij), A � B is

equivalent to aij � bij for all i, j such that 1 � i � n and 1 � j � m. A � 0 is equivalent

to aij � 0 and for any real � � 0, the set �
 is de�ned as fx = �y; y 2 
g.

2. SATURATING FEEDBACK CONTROL MODEL

Consider the discrete-time uncertain linear system represented by the following state

equations and constraints:

x(k + 1) = Ax(k) +Bu(k) ; (A;B) 2 P (1)

��u � u � û ; �u; û � 0 (2)

where x(k) 2 <n, u(k) 2 <m, are state and control variables respectively and matrix

pair (A;B) is unknown but restricted to set P � (<n�n�<n�m). Assume the saturating

feedback control law

u(k) = sat(Fx(k)) (3)

where F 2 <m�n is constant and the components of sat(Fx) are given by:

sat(Fx)i =

8><
>:
��ui if fix < ��ui
fix if ��ui � fix � ûi
ûi if fix > ûi

(4)

where fi denotes the ith row of matrix F .

From Eq. (1), (3), the closed-loop system is given by the nonlinear model:

x(k + 1) = Ax(k) +Bsat(Fx(k)) ; (A;B) 2 P (5)

Considering all x 2 <n, each one of the m components of the saturating law Eq. (4)

has 3 possible states: saturated at lower bound, not saturated and saturated at upper

bound. Consequently, <n can be decomposed into j = 1 : 3m regions S(Rj; dj) � <n,

called saturation regions (Silva Jr. & Tarbouriech, 1997), given by polyhedra:

S(Rj; dj) = fx 2 <n;Rjx � djg (6)

Rj =

2
6664

Fns

�Fns

�Fsu

Fsl

3
7775 ; dj =

2
6664

ûns
�uns
�ûsu
��usl

3
7775 (7)



where Fns, ûns, �uns, Fsu, ûsu, Fsl, �usl, denote matrices and vectors appropriately formed

by the rows of F , û, �u, related, respectively, to the components not saturated, saturated

at upper level and saturated at lower level, which characterize the region. Within each

saturation region S(Rj; dj), closed-loop system Eq. (5) is represented by a linear model

of the form (Silva jr. & Tarbouriech, 1997):

x(k + 1) = Ajx(k) + pj
Aj = [A+BnsFns]

pj = Bsuûsu � Bsl�usl

; (A;B) 2 P (8)

where Bns, Bsu and Bsl denote matrices appropriately formed by the columns of B related

to Fns, ûsu, �usl, respectively. Throughout the paper, it will be assigned j = 1 for the region

of linear behavior of sat(F (x)), described by:

R1 =

"
F

�F

#
; d1 =

"
û

�u

#
; A1 = A+BF ; p1 = 0 ; (A;B) 2 P (9)

3. ROBUSTLY CONTRACTIVE SETS

Consider closed-loop system, Eq. (5), and the convex compact polyhedron:

S(G;w) = fx 2 <n;Gx � wg (10)

where G 2 <r�n and w > 0 2 <r.

De�nition 1: Polyhedron S(G;w), Eq. (10), is said to be robustly �-contractive w.r.t.

uncertain closed-loop system, Eq. (5), if there is a real 0 < � < 1 such that x(k + 1) 2

S(G;w��) for all 0 < � � 1, all x(k) 2 S(G;w�) and all (A;B) 2 P.

De�nition 2: The one-step robustly admissible set to S(G;w) w.r.t. uncertain system,

Eq. (5), is given by:

Q(G;w) = fx 2 <n;G[Ax+Bsat(F (x))] � w 8 (A;B) 2 Pg (11)

Proposition 1: Polyhedron S(G;w), Eq. (10), is robustly �-contractive w.r.t. uncertain

closed-loop system, Eq. (5), i� there is a real 0 < � < 1 such that:

S(G; �w) � Q(G; ��w) 8 0 < � � 1 (12)

Proof: immediate from De�nition 1. 2

Let uncertain domain P be given by convex compact polytope:

P =

(
(A;B) : (A;B) =

l=sX
l=1

�l(A
l; Bl) ; �l � 0 ;

l=sX
l=1

�l = 1

)
(13)

where (Al; Bl) 2 <n�n � <n�m are extreme points.

For P given by Eq. (13), noting that G[Ax+Bsat(F (x)] � w is a�ne in (A;B), it is

easy to verify that Q(G;w) is given by

Q(G;w) = fx 2 <n;G[Alx+Blsat(F (x))] � w l = 1 : sg (14)

Moreover, from Eq. (6) to (8), it is also easy to verify that Q(G;w) restricted to saturation

region S(Rj; dj) is given by

Qj(G;w) = fx 2 x(Rj; dj);G[A
l
jx+ plj] � w l = 1 : sg (15)



where Al
j, p

l
j, are the linear model parameters in S(Rj; dj) related to extreme point

(Ai; Bi).

Based on Proposition 1 and Eq. (14), (15), the following Proposition gives a necessary

and su�cient condition for a polyedral set be robustly �-contractive.

Proposition 2: Considering uncertain parameter domain, Eq. (13), polyhedron S(G;w),

Eq. (10), is robustly �-contractive w.r.t. closed-loop system, Eq. (5), i� for the j = 1 : 3m

saturation regions Eq. (6), (7), (8) and for the l = 1 : s extreme points of P, there is a

real 0 < � < 1 such that

h
GAl

j ��w
i " x

�

#
� �Gplj (16)

holds for any �, x satisfying:

2
6664

G �w

Rj 0

0 1

0 �1

3
7775
"
x

�

#
�

2
6664

0

dj
1

0

3
7775 (17)

or, in other words, i� there is 0 < � < 1 such that polyhedron Eq. (17) is a subset of

polyhedra Eq. (16).

Proof: From Proposition 1, S(G;w) is robustly �-contractive i�

S(G; �w) � Q(G; ��w) 8 0 < � � 1 (18)

Equations

<n =
j=3m[
j=1

S(Rj; dj) (19)

S(G; �w) = S(G; �w) \ <n (20)

give

S(G; �w) =
j=3m[
j=1

S(G; �w) \ S(Rj; dj) (21)

From Eq. (15), (18), (21), it can be veri�ed that

S(G; �w) \ S(Rj; dj) � Qj(G; ��w) 8 0 < � � 1 j = 1 : 3m (22)

From Eq. (15), Qj(G; ��w) is a polyhedron given by the intersection of l = 1 : s polyhedra:

h
GAl

j ��w
i " x

�

#
� �Gplj (23)

From Eq. (6), (7), (10), S(G; �jw) \ S(Rj; dj) is given by polyhedron:

2
6664

G �w

Rj 0

0 1

0 �1

3
7775
"
x

�j

#
�

2
6664

0

dj
1

0

3
7775 (24)



It is easy to verify that inclusion relation, Eq. (22), holds i� polyhedron, Eq. (24), is a

subset of all polyhedra in Eq. (23), which concludes the proof. 2.

The following Corollary gives a linear programming formulation to Proposition 2.

Corollary 1: Polyhedron S(G;w), Eq. (10), is robustly �-contractive w.r.t. closed-loop

system, Eq. (5), i� there is a real 0 < � < 1 such that:

max
j;l;i

f�(j)ilg � 0 (25)

1 � j � 3m ; 1 � l � s ; 1 � i � r

such that �(j)il are obtained solving the following independent feasible linear programs:

�(j)il = max
x;�

(giAl
jx� �wi�+ giplj)

subject to:

Gx� w� � 0

Rjx � dj
0 � � � 1

(26)

where gi, wi, are the ith row of G, w, respectively and Rj, dj, A
l
j, p

l
j are related to

saturation regions, piecewise linear model Eq. (6) to (8) and uncertain parameter domain

Eq. (13). Furthermore, let �(j)il, x(j)
i
l be an optimal solution related to �(j)il > 0. This

indicates that x(j)il 2 S(G; �(j)ilw) is outside the ith face of Qj(G; �w�(j)
i
l), Eq. (15):

giAl
jx� �wi�(j)

i
l � �giplj (27)

Proof: Inspecting Eq. (16), (17), it is easy to verify that Proposition 2 is satis�ed i�

giAl
jx� �wi� � �giplj

j = 1 : 3m ; i = l : s; i = 1 : r
(28)

hold for all �, x satisfying Eq. (17). In other words,

max
x;�

(giAl
jx� �wi� + giplj) � 0 (29)

subject to:2
6664

G �w

Rj 0

0 1

0 �1

3
7775
"
x

�

#
�

2
6664

0

dj
1

0

3
7775

must hold for j = 1 : 3m, l = 1 : s and i = 1 : r . It is easy to verify that linear

programs Eq. (29) are equivalent to linear programs Eq. (25), (26). Let �(j)il and

�(j)il, x(j)
i
l, denote respectively, optimal performance indexes and optimal solutions of

linear programs Eq. (29). From Eq. (22),(29) it is also easy to verify that �(j)il > 0

indicates that x(j)il 2 S(G; �(j)ilw) is outside the ith face of Qj(G; �w�(j)
i
l), Eq. (15),

which concludes the proof. 2

4. CONSTRUCTION OF ROBUSTLY �-CONTRACTIVE SETS

Consider a closed convex polyhedral set 
 with nonempty intersection with the region

of nonlinear behavior of system in Eq. (5). From De�nition 1, it is immediate to verify that



the family of all robustly �-contractive polyhedral sets w.r.t. system, Eq. (5), contained

in 
, is closed under the operation of union. Consequently, this family must have a closed

supremal element, formed by the union of all its members. However, due to the nonlinear

nature of the saturating control law, Eq. (4), convexity of one-step robustly admissible

set, Eq. (11), and closure under the convex hull of union cannot be assured. Conse-

quently, convexity of the supremal element cannot also be generally assured. Considering

these drawbacks, based on Proposition 1 and Corollary 1, an heuristic non homothetic

expansion approach is proposed for constructing a convex robustly �-contractive polyhe-

dral set with nonempty intersection with the region of nonlinear behavior of system in

Eq. (5). In general terms, the following task is executed recursively: given a convex ro-

bustly �-contractive set S(Ga; wa) and its homothetically expanded S(Ga; �wa), construct

a robustly �-contractive set S(G;w) such that S(Ga; wa) � S(G;w) � S(Ga; �wa). For

constructing S(G;w), start with S(G;w) = S(Ga; �wa) and recursively intersect S(G;w)

with cutting-planes related to faces of one-step robustly admissible set Qj(G; ��w), Eq.

(15), which do not satisfy Corollary 1. See Procedure 1 in Appendix for a detailed de-

scription.

5. NUMERICAL EXAMPLE

Consider the following uncertain system with saturating feedback control law:

x(k + 1) = Ax(k) +Bu(k)

��u � u � û

u(k) = sat(Fx(k))
(30)

A =

"
0:8 + q1 0:5

�0:4 1:2

#
; B =

"
0

1:0� q2

#
; 0 � q1; q2 � :1

�u = û = 7:0 ; F =
h
0:2888 �1:8350

i

Assume a contraction rate � = :998. S(Gl; wl), the supremal �-contractive polyhedral

set w.r.t. system, Eq. (30), contained in its region of linear behavior, is given by:

Gl =

2
6664

0:2888 �1:8350

0:4351 1:3096

�0:2888 1:8350

�0:4351 �1:3096

3
7775 ; wl =

2
6664

7:0

6:9860

7:0

6:9860

3
7775 (31)

Figure 1 presents the following �-contractive sets w.r.t. system, Eq. (30), with con-

traction rate � = :998:

S(Gl; wl): supremal robustly �-contractive polyhedral set w.r.t. system, Eq. (30), con-

tained in its region of linear behavior (D�orea & Hennet, 1996);

S(G;w): robustly �-contractive polyhedral set w.r.t. system, Eq. (30), constructed

by Procedure 1 in Appendix, with parameters � = 1:5, �m = 1:1 and initial set

S(Gl; wl);

S(Gp; wp): �-contractive polyhedral set w.r.t. system, Eq. (30), considering system pa-

rameters perfectly known, (q1 = 0; q2 = 0), constructed by Procedure 1 in Appendix,

with parameters � = 1:5, �m = 1:1.



It can be veri�ed, in Fig. 1(A), that polyhedron S(G;w) is much larger than poly-

hedron of depart S(Gl; wl) in the region of linear behavior, showing the e�ectiveness of

Procedure 1 in the constrution of a robustly �-contractive polyhedral set over the region of

nonlinear behavior of a closed loop system with saturating controls. As expected, S(G;w)

being robust w.r.t model uncertainties, is a subset of S(Gp; wp) which assumes a perfectly

known model. Figure 1(B) shows a trajectory of uncertain closed-loop system, Eq. (30),

starting from an extreme point of S(G;w).
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Figure 1: �-contractive polyhedra

6. CONCLUSION

New necessary and su�cient conditions have been proposed for compact polyhedral

sets be robustly �-contractive w.r.t. discrete-time systems with uncertain domains de-

�ned by compact polytopes. The proposed conditions are based on piecewise linear

model related to the saturation regions of the feedback law and use facial description

of the polyhedral set combined with extreme points of uncertain domain. Using e�cient

linear programming formulation of these necessary and su�cient conditions, an e�ec-

tive non homothetic expansion procedure has been proposed for construction of robustly

�-contractive sets with nonempty intersection with regions of closed-loop nonlinear behav-

ior of uncertain systems. The procedure starts with the supremal robustly �-contractive

polyhedral set contained in the region of linear behavior of the uncertain system and pro-

gressively expands it over the region of nonlinear behavior. The e�ectiveness of proposed

procedure is due to following features: non conservative and computationally e�cient

�-contractivity test; judicious avoidance, during the expansion process, of intersections

of convex polyhedron in construction with the non convex boundaries of its one-step ad-

missible set; periodical elimination of redundant inequalities in the facial description of

polyhedron being constructed.
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APPENDIX

Procedure 1: Construction of a robustly �-contractive set S(G;w), Eq. (10), w.r.t.

system, Eq. (5), involving its regions of nonlinear behavior.

step 1 - Initialization

Choose parameters:

� - contraction rate

� > 1 - expansion coe�cient

�m < � - minimum expansion coe�cient

Construct the supremal robustly �-contractive set S(G;w) contained in region of

linear behavior S1(R1; d1) (Blanchini, 1994), (D�orea & Hennet, 1996).



step 2

Eliminate redundant inequalities in S(G;w) (Milham, 1976).

Set: Ga = G

step 3 - homothetic expansion

Set: wa = w ; w = �wa

step 4

Check if S(G;w) is robustly �-contractive (Routine 1.1)

If Answer = Y es : S(G;w) is �-contractive, return to step 3.

step 5 - Construction of a robustly �-contractive set S(G;w) such that

S(Ga; �mwa) � S(G;w) � S(Ga; �wa)

step 5.1 - De�ne the cutting plane S(~g; ~w) to S(G;w) related to j�, l�, i� identi�ed

by Routine 1.1

~g = gi
�

Al�

j� ; ~w = �wi� � gi
�

pl
�

j�

step 5.2

Check if S(Ga; �mwa) � S(~g; ~w) (Hennet, 1989)

If Answer = No : S(Ga; wa) is the desired robustly �-contractive set. Stop

step 5.3 - Construction of S(~g; ~w) \ S(G;w)

G =

"
G

~g

#
; w =

"
w

~w

#

step 5.4

Check if S(G;w) is robustly �-contractive (Routine 1.1)

If Answer = Y es

Then: S(G;w) is robustly �-contractive. Return to step 2.

Otherwise: return to step 5.1

Routine 1.1: Check if S(G;w) is robustly �-contractive using Corollary 1.

� For j = 1 : 3m,

For l = 1 : s, i = 1 : r, solve the linear programs:

�(j)il = max
x;�

giAl
jx� �wi�+ giplj

Gx� w� � 0

Rjx � dj
0 � � � 1



Set

�j = max
l;i

�(j)il

(lj; ij) = argmax
l;i

�(j)il

�j = �(j)
ij
lj

� If:

max
j
f�jg � 0

Then: set Answer = Y es

Otherwise: set Answer = No and identify the inner saturation region not satisfying

Corollary 1:

j� = argmin
j

�j s:t: �j > 0

l� = lj� ; i� = ij�

Some remarks about Procedure 1 are opportune:

Selection of the inner saturation region by Routine 1.1 in steps 4, 5.4 and the inclusion

check in step 5.2, are an attempt to avoid cutting-planes intersecting S(Ga; �mwa)

due to the non convexity of Q(G; �w). See Fig. 2;

Elimination of redundant inequalities in step 2 is strongly recommended, not only to

obtain a concise representation of S(G;w), but also for the overall computational

e�ectiveness of the procedure;

If convenient, any robustly �-contractive convex polyhedral set can be used as initial set

in step 1.

ab
c

de

Figure 2: a - Q(G; �w) b - S(G; �w) c - S(Ga; ��mw)

d - not acceptable cutting-plane e - S(~g; � ~w)


